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Abstract— Various instruments are used to create images of be addressed by analyzing very large amounts of data that

the Earth and other objects in the universe in a diverse set were generated by instruments with different measurement
of wavelength bands with the aim of understanding natural capabilities.

phenomena. Sometimes these instruments are built in a phade . . .
approach, with additional measurement capabilities addedin For example, consider the relationship between the
later phases. In other cases, technology may mature to the m  AVHRR/2 (Advanced Very High Resolution Radiometer) and
that the instrument offers new measurement capabilities tat the MODIS (Moderate Resolution Imaging Spectroradion)eter
were not planned in the original design of the instrument. In jnstruments. AVHRR/2 generates images in only five spectral
still other cases, high resolution spectral measurements ay be channels, whereas MODIS generates images in 36 different
too costly to perform on a large sample and therefore lower .
resolution spectral instruments are used to take the majoty of spectral channels. However, AVHRR/2 data has be_en avall_abl
measurements. Many applied science questions that are remnt  Since 1981 whereas MODIS has only been available since
to the earth science remote sensing community require anadjs of 1999. MODIS channels 1, 2, 20, 31, and 32 correspond rea-
enormous amounts of data that were generated by instruments sonably well to the five AVHRR/2 channels. We can use data
with disparate measurement capabilities. This paper addreses mining methods to model any MODIS channel not available
this problem using Virtual Sensors: a method that uses mods| . . .
trained on spectrally rich (high spectral resolution) data to " AVHRR/2 as a function of these five MODIS channels. We
“fill in” unmeasured spectral channels in spectrally poor (low can then use the learned model to generate an estimate of what
spectral resolution) data. The models we use in this paper that MODIS channel would have been had it been available in

are Multi-Layer Perceptrons (MLPs), Support Vector Machines  AVHRR/2 given the five actual AVHRR/2 channels as input.

(SVMs) with Radial Basis Function (RBF) kernels and SVMs wih ; : ; ; ;
Mixture Density Mercer Kernels (MDMK). We demonstrate this I the Iearne;j model is r?f hlgf: q]tjallty, We can use It to obt;’:un
method by using models trained on the high spectral resoluin €Stimates of MODIS channels for years prior to 1999 when

Terra MODIS instrument to estimate what the equivalent of the  MODIS came on-line. We refer to this as\artual Sensor
MODIS 1.6 micron channel would be for the NOAA AVHRR/2  because it estimates unmeasured spectra. In this papegeve u
instrument. The scientific motivation for the simulation of the 1.6  \/jirtual Sensors to generate an estimate of MODIS channel 6
micron channel is to improve the ability of the AVHRR/2 senso (1.6 microns) for AVHRR/2 because a spectral channel at 1.6
to detect clouds over snow and ice. ; . LT ;
o microns is useful for discriminating clouds from snow- and
Index Terms— Data Mining, Neural Networks, Support Vector jce-covered surfaces. We chose this task to demonstrate the
Machine, Kernel Methods, Remote Sensing, MODIS, AVHRR, usefulness of Virtual Sensors in this paper
cloud detection. i . pap L -
In the next section, we discuss the scientific motivation
for using Virtual Sensors to simulate MODIS channel 6 for
I. INTRODUCTION the AVHRR/2 instrument. In Section Ill, we describe Virtual

HIS paper describes the development of data mini,@ensors formally and as a general method going beyond the
algorithms that learn to estimate unobserved spectra frépecific application that we discuss in Section I1. In Sectig
remote sensing data. The idea is that data mining algorithi{g briefly review some standard machine learning algorithms
trained on spectrally-rich (high spectral resolution)adaain that we use to perform the modeling necessary to create a
be used to generate estimates of what those measurem¥ftgal Sensor. In Section V we discuss our experimental
would have been for data that are spectrally-poor (low $abctreSU|tS- Section VI concludes the paper and discussesefutur

resolution), This enables us to glean more information fromork.

that spectrally-poor data. This is an important problenoloes

because spectrally-poor data may be available for longer pe ||, v |rTUAL SENSORS FORCRYOSPHEREANALYSIS

ods of time than spectrally-rich data. This happens becaiise o .

improvements in measurement capabilities due to instrgsnen Ntensification of global warming in recent decades has
being built in phases, technological improvements, or tedn @iSed interest in year-to-year and decadal-scale cliveate

to reduce measurement costs. Many applied science qwst@i’r‘“ty in the Polar Regions. This is because these regions

that are relevant to the remote sensing community need & believed to be among the most sensitive and vulnerable
to climatic changes. The enhanced vulnerability of the Pola
Manuscript received March 15, 2004; revised November 18420This Regions is believed to result from several positive feelbac
work was supported by the NASA Intelligent Systems Intelfig Data  jncluding the temperature-albedo-melt feedback and iwedel
Understanding Program. . . . .
A N. Srivastava and N. C. Oza are at the NASA Ames Researchecen adiation feedback. Recent observations of regional atiesna

J. Stroeve is with the National Snow and Ice Data Center in ice extent, thinning of the margins of the Greenland ice
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sheet, and reduction in the northern hemispheric snow cowescribing a time series of data cubes (spectral images) of
may reflect the effect of these feedbacks. Remote senssigen x n x A.
products provide spatially and temporally continuous and Consider a situation where one is given a sergowhich
consistent information on several polar geophysical Wem takesk spectral measurements in wavelength baids =
over nearly three decades. This period is long enough toipergh;, Ao, ..., A\x} at time ¢;. Suppose that we have another
evaluation of how several cryospheric variables change sensorS; which has a set of spectral measurements taken
phase with each other and with the atmosphere and can ha&gime ¢z, Ba = {1, A2, ..., Ak, Akt 1, Akt2, - - -5 Ak} that
to improve our understanding of the processes in the coupleattially overlaps the spectral features containedBin in
land-ice-ocean-atmosphere climate system. Cloud detectterms of power in the spectral bands. Thd; (or, in
over snow- and ice-covered surfaces is difficult using sens@eneral,B; N By) are the common spectral measurements.
such as AVHRR/2. This is because of the lack of spectriliote that these measurements are common only in their power.
contrast between clouds and snow in the channels on Be= By \ By = {M\¢i1, M\et2, ..., Ay} represents the
earlier AVHRR/2 sensors. Snow and clouds are both hightgeasurements available B, that are not available iB;.
reflective in the visible wavelengths and often show littl§Ve investigate the problem of building an estimafg# (B))
contrast in the thermal infrared. that best approximates the joint distributi®{Z(B)|Z(B1)),

The AVHRR Polar Pathfinder Product (APP) consists ofhere Z(B) is the data cube for the wavelength barlls
twice daily gridded (at 1.25 and 5km spatial resolutionface Thus, we have:
albedo and temperature from 1981 to 2000. A cloud mask
accompanies this product but has been found to be inadequate I'(Z(B)) = P(Z(B)|Z(By1)) (2)

particularly over the ice sheets [1]. The 1.6 micron charomel The value of building an estimator fd? is clear particularly

the MODIS |_nstrument as V‘.’?" as the AVHRR/3 sensor Al situations wheres; has been in operation for a much longer
S|gn|f|cantly improve the ab|I|ty_to detgct clouds over sno riod of time thanS,. S; may have fewer spectral channels
and ice. Therefore, by developing a virtual sensor to mo ﬁ?which measurements are taken comparedgoHowever

the MODIS 1.6 micron channel (channel 6) as a functlol may be of scientific value to be able to estimate what the

.Of ;[Ee :\;ERR% cf:annzls, vl;/e can |:Inp_rove thet(rzlloudtr_nas ectral measurements in wavelengBisvould have been if
in the product, and subsequently improve the retrievalS . 14 have measured them.

of surface temperature and albedo in the product. In dOinéThe joint distribution given byP(Z(B)|Z(B1)) contains

so we will be .able to 'mprove t_he accuracy in documentlnaql the information needed to recover the underlying strrect
_seasona! gnd m_ter-annual variations in snow, ice sheesend captured by the sens6s. If perfect reconstruction of this joint
ice conditions since 1981. distribution were possible, we would no longer need sensor
So because all the relevant information could be generated
II1. VIRTUAL SENSORS IN GENERAL from the smaller subset of spectral measuremBitand the
) ) . . _estimatorT". Of course, such estimation is often extremely
In this section, we discuss Virtual Sensors in general,@0iRjgic it because there may not be sufficient information in
beyond the specific application discussed in section Il. F{s hangds, to perfectly reconstruct the distribution. Also, in
purposes of the discussion presented here, we model the daia caqes the joint distribution cannot be modeled phpper
as rr_1atr|ces of time series (fol_lowmg the rjotatmn in [2]ner using parametric representations of the probability ithistron
s_p_atlotemporal random_ functioff (u, A, t)_ IS mo‘?'e'ed 88 2 gjnce that may require a significant amount of domain knowl-
finite pumbern of spatlally correlated time series with theedge and may be a function of the ground cover, climate, sun
following representation: position, time of year, and numerous other factors.
In this paper, we describe methods to estimate the first
moments of this distribution. Some methods allow us to model
the second moment of the distribution as well:

| o nz®) = [rem)zm)s ®
In Equation 1,u represents the spatial coordinakerepre-

sents the vector of _mea}sured wavelength(s), anebresents o*(Z(B)) = /[P(Z(B)) — u(Z(B)]>Z(B)dB (4)
time. The superscript indicates the transpose operator. If
multiple wavelengths are measured, then edgcks actually a We use the functionl’ in the above computations as an
matrix, and the functiorZ(u, A, t) represents a data cube ofestimate of the (unknown) joint distributioR. Several com-
size(nx A xT), where these symbols represent the number piitational problems as well as problems due to the underlyin
spatial locations, the total number of measured wavelengtphysical measurement process arise when we attempt to esti-
and the total number of time samples, respectively. In thisatel.
notation, the spatial coordinaie represents the coordinates Figure 1 gives a schematic view of the general virtual sensor
(or index) of a measurement at a particular location in thgroblem. The solid and dotted lines correspond to sensors
field of view. Conceptually, the equation above describesta &, and S, respectively. A Virtual Sensor can be built when
of n (A x T') matrices. In the event that the spatial coordinatbere are some overlapping sensor measurements as depicted
indexes image pixels, it is useful to think of Equation 1 aim the figure. Notice that if there are no overlapping sensor

Zu\t) = [Za(\t)] (1)
= [Zu, (M), Zuy (N 1), ey Z, (N 1))
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12 : : : : : : : ‘ ‘ TABLE |
Wo woul e t0 e LINEAR CORRELATIONSBETWEENMODIS CHANNELS
10k - for this wavelength. |
o e, . Chamel| 1 | 2 | 20 | 31 | 32 | 6 |
8 ] 1 1.0000 | 0.9980 | 0.8778 | 0.8785| 0.8784 | 0.6287
2 0.9980 | 1.0000| 0.8786 | 0.8774 | 0.8773 | 0.6564

@
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Spectral measurements
from Sensor S2 (dotted lines)

S
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; 20 0.8778 | 0.8786 | 1.0000 | 0.9977 | 0.9977 | 0.7369
: 31 0.8785| 0.8774 | 0.9977 | 1.0000 | 1.0000 | 0.6979

Power, Z(B)

32 0.8784 | 0.8773| 0.9977 | 1.0000 | 1.0000 | 0.6984
6 0.6287 | 0.6564 | 0.7369 | 0.6979 | 0.6984 | 1.0000
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Fig. 1. This figure helps illustrate the need for a Virtual S8nWe have
spectral measurements from two sens$ysand Sz, (solid and dotted lines,
respectively). We wish to estimate the output of ser$pifor a wavelength
where there is no actual measurement from the sensor. Naitsdme sensor
measurements overlap perfectly, as in the case of wavéleagt and in other
cases, such as wavelength = 1, there is some overlap in theureezents.

measurements, we are unable to build an estimator. In real-

world problems, some measurements may overlap perfectly,

while others have a partial overlap. Generally speaking the

measurements from sensS¢ are not available at all wave-

lengths. o ) [
In the event that alk wavelength bands i5; overlap with

a corresponding subset bfbands inS,, butSe has bands not o o o
available inSy, the estimation process is more straightforward. °® PY °®
When patrtial overlap occurs between two sensors for a given

wavelength, calculations need to be performed to estimate inputs hidden outputs
the amount of power that would have been measured in units

tmhgtr(])(\)/cejglappmg bands. This can be done using mterpolatllc_)irgy 2. An example of a MuliLayer Perceptron (MLP).

We now outline the procedure for creating a Virtual Sensor. Note that this procedure will only work if sufficient in-
At a minimum, we assume that for sensSi we have formation exists to predicZ(B) given dataZ(B;). One
measurements; (B, ) from one image, and for another sensogimple procedure for determining this is to look at the linea
S, we assume that we have another imagegB:). The correlation between the spectra. Figure | shows the inter-
procedure for creating a Virtual Sensor is as follows, assgm channel linear correlations for the MODIS channels that we
that we need to build a predictor for chanigl,; (recall that use in this study (channels 1, 2, 20, 31, 32, and 6). In
k is the number of bands iB,): this paper we build models to predict MODIS channel 6.

1) Find parameters #  that  minimize  the Notice that channel 6 has moderate linear correlations with

squared error (or another suitable metriche other channels. This gives us hope that we can predict

[E[T(Z2(B1),0)] — Za(bry1)]?. This is the Virtual MODIS channel 6 given the channels common to MODIS

Sensor model fitting step. and AVHRR/2. However, the large correlations among the
five common channels mean that they contain much redundant

2) Apply T to the data from sensaf; to generate an information; therefore, prediction may be difficult.

estimate of E[I'(Z1(bg+1),6)]. This is the step where
the estimation of the unknown spectral contribution IV. STANDARD MACHINE LEARNING METHODS

oceurs. This section describes three estimation methods that we

. . have used to build a Virtual Sensor: a feed-forward neural ne
3) Evaluate the results based on science based metrics andk | led il
other information known about the image. work (also called a multilayer perceptron, (MLP)), a Sugpor

i . . _ Vector Machine (SVM), and an SVM with a Mixture Density
The procedure described above is standard in the data miniagrcer Kernel.

literature. From the remote sensing perspective, it is@sting

to see the potentially systematic differences between the )

performances of the estimator on data from senshrand A Multi-Layer Perceptrons

Sa. These will tell us how much the differences between the We first describe multilayer perceptrons, a type of neural
overlapping bands of the two sensors affect the accuracyratwork [3]. The central idea of neural networks is to camstr
the Virtual Sensor relative to the true sensor. linear combinations of the inputs as derived features, hed t
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model the target as a nonlinear function of these derived
features. Neural networks are often depicted as a directed
graph consisting of nodes and arcs. An example is shown
in Figure 2. Each column of nodes is a layer. The leftmost
layer is the input layer. A data point to be classified is esder
into the input layer. The second layer is the hidden layer and
the third layer is the output layer. Information flows froneth
input layer to the hidden layer and then to the output layer
via a set of arcs (depicted in Figure 2 as arrows). Note that
the nodes within a layer are not directly connected. In our
example, every node in one layer is connected to every node
in the next layer, but this is not required in general. Also, a
neural network can have more or less than one hidden layer
and can have any number of nodes in each hidden layer.
Each non-input node, its incoming arcs, and its output
(which is passed out through all of its outgoing arcs) cousti , , o _
a neuron, which is the basic computational element of a heufi: % SUPPort eclor Machne for reression, The soli e e e
network. Each incoming arc multiplies the value coming froffom the fitted line. The points within the dashed line aresidered to have
its origin node by the weight assigned to that arc and ser#go error by are-insensitive loss function.
the result to the destination node. The destination nods a
the values presented to it by all the incoming arcs, transfor
it with a nonlinear activation function (to be describecetyt ~ Support Vector Machines for classification and regression
and then sends the result along all of its outgoing arcs. Fji¢ described in detail in [4], but here we briefly describe

example, the return value of a hidden nagen our example Support Vector Regression (SVR), which we use in this paper.
neural network is In real-world problems, traditional linear regression matnbe

expected to fit a data set perfectly (i.e., with zero errooy. F
this reason, nonlinear regression is often used with theshop

(Ii:g. Support Vector Machines

|A| that a more powerful nonlinear model will achieve a better
zZj=4g walj)xl , (5) fit to the data than a linear model. However, this power often
i=1 comes with two drawbacks. The first drawback is that the

error surface as a function of the parameters of a nonlinear

where|A| is the number of input unitapg,’“j) is the weight model (such as the multilayer perceptrons discussed above)
on the arc in thekth layer of arcs that goes from uriin the often have many local optima that are not globally optimal.
kth layer of nodes to unif in the next layer (scwglj) is the Nonlinear regression algorithms such as backpropagation f
weight on the arc that goes from input unito hidden unit MLPs often find these local optima, which can result in

j) andg is a nonlinear activation function. A commonly used model that does not predict well on unseen data. The
activation function is the sigmoid function: second drawback is that nonlinear model fitting is often lgver

sensitive to the locations of the training points, so thayth
overfit the training points and do not perform well on new
o) = T (6 data
1+ exp(—a) Support Vector Regression performs nonlinear regression b
solving a convex optimization problem, which has one glybal
optimal solution. This solves the first drawback discussed
above of ending up with a locally optimal parameter setting.
z SVR addresses the second drawback in three ways. The first
(e

The return value of an output nodg is

Zwﬁ)zi (7) way is to use are-insensitive loss function. If; is the true
= response ang(x) is the predicted response for the input
then the loss function is
where Z is the number of hidden units arudfj) is the
weight on the arc from hidden unitto output unitj. The
outguts are clearly nonlinear functions of tEe inputjs. [y = f&)le = maz{0, ly = f(x)] = e} (8)
Neural networks are trained to fit data by a process thatThat is, if the error between the true response and the
is essentially nonlinear regression. Given each entry & tpredicted response is less than some smadhen the error on
training dataset, the network’s current prediction is glted. that point is considered to be zero. For example, in Figure 3,
The difference between the true function value and the pide solid line, which is the fitted line, is withia of all the
diction is the error. The derivative of this error with resp® points between the two dashed lines; therefore, the error is
each weight in the network is calculated and the weights azensidered to be zero for those points.elfis set to the
adjusted accordingly to reduce the error. level of the typical noise that one can expect in the response
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variable, then support vector regression is less likelyxmead

effort fitting the noise in the training data at the expense of m

generalization performance, i.e., it is less IiKer to diter f(x) = Z(O‘? — ;) K (xi,%;) +b. (15)
The second way support vector regression addresses the

overfitting problem is to allow some error beyoador each

training point but minimize the total such error over all the In summary, the Support Vector Machine allows us to fit a

points. In Figure 3¢ is the additional error for one particularnonlinear model to data without the local optima problent tha

point. The sum of the errors of all the training points i®ther procedures suffer from and with less tendency to dverfi

minimized as part of solving the optimization problem. This The kernel functionk can be viewed as a measure of

also reduces the effort expended in fitting the noise in ti&Milarity between two data points. For example, with the

training data. Gaussian kernel, the valué(x;, x;) increases as the distance
The third way that SVR addresses the above problems ish@tween the pair of pointx; and x; decreases. There is

map the data from the original data space into a much higtgégnificant current research attempting to determine which

(possible infinite) dimensionafeature spaceand perform kernel functions are most appropriate for different typés o

linear regression in that space. The idea is that the lingdioblems. One such novel kernel function is the Mixture

model in the feature space may correspond to a complicafégnsity Mercer Kernel (MDMK) which is discussed in the

nonlinear model in the original data space. Clearly, on@lgegext section.

a practical way to deal with data that is mapped to such a

high-dimensional space, which intuitively seems impdssib ) )

However, one is able to do this using thernel trick By C. Mixture Density Mercer Kernels

int_rqducing Lagrqnge multipliers and obtaining the duaﬂrm_‘ The Mixture Density Mercer Kernel (MDMK) [5] is a
original SVR optimization problem (see [4] for the details)nethod of learning a kernel function directly from the data.

=1

one obtains the following: Some kernel functions, like the Gaussian Kernel discussed i
the preceding section, are predefined. In fact, the Gaussian

o s s Kernel is just a nonlinear function of the Euclidean dis&anc
MaxiMIZ&, a~er — GZ(Q? +aq) + Z(O‘r —ai)yi (9 petween points. Rather than assuming a priori that the Eu-
=1 =1 clidean distance or some other distance function is cqrrect

“_a)xi-x; (10) the MDMK generates a measure of similarity that attempts to
7o represent the similarity between points based on theirdtigh
(11) level features. These higher level features could be medsur
m a variety of ways. In the subsequent paragraphs, we illigstra
and Z(O‘i —a})=0. (12) one way of measuring higher level features.

K2 ° . . .

P Our idea is to use a collection or, more formally, an
ensemblef probabilistic mixture models as a similarity mea-
sure. Two data points will have a large similarity if mulgpl

m models agree that they should be placed in the same cluster

f(x) = Z(Oﬁ —ai)xi - x;j +b. (13) or mode of the distribution. Those points where there is

’ ! some disagreement will be assigned intermediate sinyilarit
scores and points for which most models disagree will be
éalrssigned low similarity scores. The shapes of the underlyin
Mixture distributions can significantly affect the simitgr
measurement of the two points. Experimental results uphold
this intuition and show that in regions where there is “no
t guestion” about the membership of two points, the Mixture
Density Kernel behaves identically to a standard mixture
model. However, in regions of the input space where there
ia disagreement about the membership of two points, the
ehavior may be quite different from the standard model, i.e
the similarity measures returned may be very differentc&in

I each mixture density model in the ensemble can be encoded
K(x;,xj)=e e (14) with domain knowledge by constructing informative priors,

] ) o ] ] the MDMK will also encode domain knowledge. The MDMK
gives rise to ab that is infinite-dimensional. However, weig defined as follows:

do not need to work directly witld or even know what it is

(af —ai)(a

N
NE

3

subject to0 < a;,

<
I

j=1
Cforallie{l,2,...,m}

1.
*
i

IN

The resulting regression estimate is of the form

=1
Note that the inputsx(s) only appear in dot products in the

high or even infinite dimensional spadé using a function
® : RY — H and the dot produc®(x;) - ®(x;) will still
be a scalar. Of cours& would be too difficult to work with
because of the high dimensionality Bf. However, there exis
kernel functionsK (x;,z;) = ®(x;) - ®(x;) such thatK is
practical to work with even though the induced by thati’
is not. For example, the Gaussian kernel (also referred to
the RBF kernel),

because thé's only appear within dot products, which canbe (x; x;) = &7 (x;)®(x;) (16)
replaced byK. Therefore, the new regression estimate after ' ) M C,
mapping the inputs from the data space to the feature space - . .
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The feature space is thus defined explicitly as follows:

1 T T
e e,
(I)(Xi) X [Pl (C = 1|Xi), P1 (C = 2|Xi), ey 0.9 _’——--a"-""--.. - -.._,...--..,_ﬁl\'x.\ _ /'/ lo.a
- T ! I
Pi(c=Clxi), Po(c = 1|x;), ..., Pu(c = Clx;)] 08k ""'-.\ '.r' 10.8
N
The first sum in equation 16 sweeps through ffiemodels o7t "-}:' {07
in the ensemble, where each mixture model is a Maximu o5l A los
A Posteriori estimator of the underlying density trained b % RIS RIER AN .
sampling (with replacement) the original dafg,, defines the g POl e \ 1oe
number of mixtures in thexth model, ana:,,, is the cluster (or ° 04 ,//’ ~a ’_,/ . {04
. H L
mode) Iabel _aSS|gned by the model. The quardity;, x;) is 05l \\ los
a normalization such thdt (x;, x;) = 1 for all <. The fact that
the Mixture Density Kernel is a valid kernel function arise: oer T ey
directly from the definition. 0.1 ==+Channel 6 Cloud Cover ——RBF True Positive | 0.1
The Mixture Density Kernel function can be interpreted & o {eloud Meask ‘ LS MDMK Tiue Positvel |
140 142 144 146 148 150 152 154

follows. Suppose that we have a hard classification strate
where each data point is assigned to the most likely poster
class distribution. In this case the kernel function couhes

number of times thé/ mixtures agree that two points shoulc{E

Day of Year

ig. 4. MODIS predictions from year 2000, days 140-153. Tigisre shows
he percent cloud cover in each image determined using eh&nhand using

be placed in the same cluster mode. In soft classificatiahe cloud mask, and the true positive rates for MLPs, SVMb RBF kernels,
two data points are given an intermediate level of simiarind SVMs with MDMK kernels on these images.

(between 0 and 1) which will be less than or equal to the ca
where all models agree on their membership, in which ca
the entry would be unity. Further interpretation of the ledrn

1

P =T

08r 0.9
function is possible by applying Bayes rule to the definin 05l Lo
equation of the Mixture Density Kernel. Thus, we have: T '

07r 0.7

M C
1 P (Xilem) P (cm)
K(xix) = Z—— 5 06},
! Z(xi, %;) ;::1021 P (xi) I R -
z 1+ @

P (Xj]cm) P (cm)

P (x;)
1 M O P (xi,%j|cm P2 (¢,
Z(xi, %) 2 2 ( Pm(lxm)(j) =

m=1cp,=1

(17)

The second step above is valid under the assumption that
two data points are independent and identically distrithute

04F

03F

Cloud Mask

H —=-Channel 6 Cloud Cover

==:MLP True Negative

—RBF True Negative

— — MDMEK True Negative
Il 1

1 1
142 144

1
148
Day of Year

1
148

150 152

This equation shows that the Mixture Density Kernel measur
the ratio of the probability that two points arise from thenga _ o ,

de to the unconditional ioint probability. If we sim Iifyis Fig. 5. MODIS predlctlo_ns from year 2000, days 140-_153. Tigisre shows
mo e_ J_ p Y 2 p ) the percent cloud cover in each image determined using eh&and using
equation further by assuming that the class distributioes ane cloud mask, and the true negative rates for MLPs, SVMs RBF kernels,
uniform, the kernel tells us on average (across models) tie SVMs with MDMK kemels on these images.
amount of information gained by knowing that two points are
drawn from the same mode in a mixture density. running time of the SVM models. The models were trained
on day 140 and tested on MODIS and AVHRR/2 images
from days 140-153. This approach maximizes the range of

V. RESULTS
. . differences in time of year between the training and testigsa
All the MODIS and AVHRR/2 data used in the analysis d allows for analysis of how much prediction loss occurs

were geolocated and gridded to a 1.25 km Equal Area Scalagge T X
X . - . a result of this difference. In running the models, onl
Earth Grid (EASE-grid) [6] containing the Greenland iceethe ixels for which the MODIS channel 1 (%.65 microns) top-y

and the s_urround_ing ocean (Whi.Ch is mixture of open wat (g-atmosphere (TOA) reflectantavas greater than 0.3 were
ar:a(:ese?o::?s)s.ezhI(rctieenfc’)vrliglcsh |g1aagef 4girzgthaengef5r 12:(3 ed, thereby removing pixels that are over open water and
w P . . Y ] eping only the snow/ice-covered areas. This turned oboi¢ to
Corresponding AVHRR/2 images were available for the sa Bout half of the MODIS day 140 image (1.6 million pixels).

dgtes, but _at d_|fferent_ orbital cross-over t|me_s._ The fesu ut of these pixels, we chose about 2500 of them at random
discussed in this section are obtained by training the thr]saoer training. In all cases. the inputs were the five MODIS
different methods on a small subset of a MODIS image from 9 ' P

the Greenland ice sheet on day 140 of the year 2000. A Sm.aHThis is the reflectance received by the sensor from the Baatimosphere.
subset was chosen to train the models because of the higR is normalized by the cosine of the solar zenith angle.
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Fig. 8. MODIS year 2000 day 140 time 1830 true channel 6.
Fig. 6. Histogram of percentage error of MLP (upper left),M6With RBF

kernel (upper right), and SVM with MDMK kernel (lower leftgliative to the  kernel and the MLP. Overall, the MLP seems to have the best
true channel 6. This was calculated for MODIS year 2000 d&ytide 1825 . . . i .
for Greenland only. combination of high true positive and true negative retiiev
rates. However, as we will see later, the SVM-based methods,
channels that correspond most closely to the five AVHRRESpecially the MDMK kernel, discover certain structurehe t
channels (see the Appendix for tables with AVHRR/2 andata not discovered by the MLP.
MODIS instrument specifications for the channels used i thi Figure 7 shows the MODIS true channel 6 (upper left) and
paper). That is, the inputs were the MODIS channels 1, 2, 28e channel 6 predictions returned by the MLP (upper right),
31 and 32. The output to be predicted was MODIS channel$/M with RBF kernel (lower left), and SVM with MDMK
kernel (lower right). In all four images, the Greenland c¢ias
is depicted in white, but only the upper half of the ice shset i
A. MODIS Results shown. The histogram of the percentage differences between
Figure 4 summarizes the amount of cloud cover for eathe true channel 6 reflectance and the model-predicted ehann
day (defined using a threshold of 0.2 on the MODIS channglreflectances are shown in Figuré. 6flhe MLP appears
6 images) together with the true positive retrieval rates iy accurately model areas that are of low reflectance in the
the MLP, SVM with RBF kernel, and SVM with MDMK MODIS channel 6 (e.g. no clouds) as seen by the high rate
kernel. The true positive retrieval rate is defined as thelverm of true negative retrieval. The MLP model is slightly less
pixels predicted to have cloud cover that actually have eloguccessful in correctly modeling the high reflectance (e.qg.
cover divided by the total number of pixels that actually dawclouds), but the overall true positive retrieval rate idl sti
cloud cover. The threshold of 0.2 was chosen for channelatively high (70 to 90%). The SVMs with RBF and MDMK
6 because the MODIS cloud mask team uses this threshattbdel tends to overpredict the reflectance in MODIS channel
Included in the figure is the percentage of cloud cover froBy particularly in areas that are of low reflectance (e.g., no
the MODIS cloud mask (MOD35) product. In computing thelouds).
fraction of cloud cover from the MOD35 product we counted
as cloudy only the pixels that were classified as “cloudy”
(i.e., we did not count those pixels classified as “probably AVHRR Results
cloudy,” “probably clear,” or “clear.” Notice that the MOBI We now discuss the results of testing our MODIS-trained
cloud mask product predicts about 20% more clouds thamodels on two AVHRR/2 images. We evaluate these results
using a threshold of 0.2 on MODIS channel 6. There afyy examining the available AVHRR/2 images, deciding where
several possible reasons for this. Firstly, the MODIS clouglouds are present based on textural variations, and dhgerv
product uses other threshold tests besides the test onalgniwhether the models’ predictions capture these predictibinis
reflectance. Secondly, studies have suggested that the BIOBUbjective evaluation is necessary because the APP closki ma
cloud mask tends to overpredict the amount of clouds ovirinadequate and the true 1.6 micron channel is unavailable
snow [7]. Figure 5 shows the true negative retrieval rates ofJust as in the MODIS results, in the AVHRR/2 results the
the three models together with the amount of cloud cover f@reenland coastline is depicted. Figure 9(a) shows thélegisi
each day. The true negative retrieval rate is the number (6hannel 1) TOA reflectance from AVHRR/2 for day 140
pixels predicted to not have cloud cover that actually do nover the Greenland ice sheet. The image shows not only the
have cloud cover divided by the total number of pixels that
actually do not have cloud cover. Overall, we see that thez_These are calculated as the trpe_ channel 6 minus the predib@nnel 6
. divided by the true channel 6 multiplied by 100. Thereforembers less than
SVM with RBF kernel has the greatest tendency to pred'@'ndicate that the model overpredicted while numbers grehgan 0 indicate
that a cloud is present, followed by the SVM with MDMK(that the model underpredicted.
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MODIS channel 6 MLP

SVM RBF kernel SVM MDMK kernel

Fig. 7. MODIS predictions from year 2000, day 149 time 1825.Ypper Left. Channel 6. (b). Upper Right. Prediction of ahMVi(c) Lower Left. Prediction
of an SVM with RBF kernel. (d). Lower Right. Prediction of a8 with MDMK kernel. The black areas with straight boundariare regions containing
no data.

Greenland ice sheet with its coastline outlined in whitet, bscattered clouds in the northwest part of the ice sheet are no
also open water areas and sea ice. The same is true indetected. The SVM RBF (Figure 9(c)) picks up the clouds
MODIS images shown in Figure 7, except in Figure 9 thédrighter areas in the image), but this method also starts to
entire Greenland ice sheet is shown. Clouds are evidentdistinguish between different snow types as evident by the
the visible image by textural variations in the south, cantrslightly different reflectance values along the westerngimar
and northwestern part of the ice sheet. Some clouds alsothe ice sheet. Further discrimination of different snow
appear brighter and some darker than the underlying sndypes is observed in the SVM MDMK (Figure 9(d)) image.
In Figure 9(b) through (d) the predicted TOA reflectances féor both the RBF and MDMK models, the tendency is to
a channel at 1.6 microns are shown. We also show the MODd8erpredict channel 6. Thus, additional information wolikl
channel 6 TOA reflectance for this day in Figure 8. Howevengeded in order to distinguish between atmospheric variati
note that this image is collected at a slightly differentitadb (i.e. clouds) and variations in the snow/ice conditionsteNo
time from the AVHRR image. Thus some differences are to ladso that, off the northwestern coast of Greenland, sea@zsa
expected as a result of changes in cloud conditions with.tintbat are cloud free appear as clouds (higher reflectancégin t
Even so, the MODIS channel 6 image is useful for helping faredictions. Thus, additional information such as surtype
validate how well the models predict TOA reflectance at 11®ay offer further improvements in the models’ ability to et
microns. The MLP prediction (Figure 9(b)) indicates thag thclouds over snow and ice.

majority of the ice sheet is cloud free (very low reflectance Figure 10(a)-(d) shows the same results as discussed above
at 1.6 microns), particularly for the northern half of the ic put for day 150. The visible image (Figure 10(a)) suggests th
sheet. However, some of the clouds that are seen as texttal entire western margin and the north central/eastens par
variations in Figure 9(a) are captured in 9(b) as brightl{big of the ice sheet are cloudy. The MODIS channel 6 image
reflectance) areas in the image, particularly in the ceaimal collected at a different time of day (Figure 11) indicateatth
southern regions of the ice sheet. Comparing Figure 9(1) wihost of the ice sheet is actually cloud free except for areas
a qualitative assessment of the clouds in Figure 9(a), iéam along the west-central part of the ice sheet and in the north.
that the majority of the clouds are captured, although the fe&Comparing the MLP (Figure 10(b)) results with the clouds



MANUSCRIPT SUBMISSION FOR IEEE TRANSACTIONS ON GEOSCIENSEAND REMOTE SENSING 9

SVM MDMK kernel

Fig. 9. AVHRR predictions from year 2000, day 140, time 18@%. Upper Left. Channel 1. (b). Upper Right. Prediction of MhP. (c) Lower Left.
Prediction of an SVM with RBF kernel. (d). Lower Right. Pretibn of an SVM with MDMK kernel. The black areas with straigioundaries are regions
containing no data.

indicated as textural variations in the AVHRR channel 1 imag MODIS 2000 day 150 channel 6
(Figure 10(a)) shows that this model captures some of t
scattered clouds along the western margin of the ice shett,
also misses quite a few of them, especially in the southentn p
and also the central-northern part of the ice sheet. Sipilar
the northeastern part of the ice sheet, the MLP is not capguri
all the clouds observed in the visible image. The SVM RB
(Figure 10(c)) model does a better job of detecting the cdou
in the northeastern region of Greenland as well as along 1
west coast. The SVM MDMK model further detects som
clouds that are missed by the SVM RBF model (e.g. alor
the south-west edge of Greenland) and also begins to highli
more of the different snow/ice types.

These two different examples help to illustrate that sifauls
ing a 1.6 micron sensor channel does not necessarily capt
all the clouds. In general, snow has very low reflectance w.
1.6 microns, whereas clouds have_high reerctgqce. Thus, Y& 11. MODIS year 2000 day 150 time 1905 true channel 6.
would expect snow cover to be bright in the visible channel
and dark at 1.6 microns. However, cloud reflectance at 1.6
microns depends in part on the cloud type and may be bright
or less bright (e.g. gray).

In the day 140 example, the MLP prediction does captur®wever, the MLP prediction does not perform quite as well.
most all of the clouds observed in the visible image. For thigven though it may still accurately predict the TOA reflectan
day, the 1.6 micron is a good cloud classifier. On day 1%Q 1.6 microns, some clouds are missed.
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SVM RBF kernel SVM MDMK kernel

Fig. 10. AVHRR predictions from year 2000, day 150, time 18@H Upper Left. Channel 1. (b). Upper Right. Prediction of MLP. (c) Lower Left.
Prediction of an SVM with RBF kernel. (d). Lower Right. Pretibn of an SVM with MDMK kernel. The black areas with straigioundaries are regions
containing no data.

VI. CONCLUSION several cryospheric variables, such as surface albediacsur
temperature, snow and ice cover.

In this paper we have presented the development of datdn the above analysis, we used calibrated TOA reflectances
mining algorithms to estimate unobserved spectra. We calbm the MODIS and AVHRR/2 instruments. These re-
this estimation method “Virtual Sensors.” We presentedesorflectance values are dependent upon the specific viewing
results on a particular instantiation of Virtual Sensof®e t and illumination geometry of the orbit considered. This may
estimation of MODIS channel 6 for AVHRR/2. Our mo-lead to some errors since snow and clouds do not reflect
tivation for choosing this particular problem is to aid irthe incoming solar radiation isotropically. The magnituafe
the discrimination of clouds from snow and ice. This is this effect remains to be determined. However, the angular
challenging problem that is essential to solve in order t@ maariability of the reflectance may possibly fall into the fse”
the cryosphere using visible and thermal imagery. Cloud$ the data so that our methods can be applied prior to using
often have spectral reflectances and temperatures similamtethods to correct for the angular variability of the TOA
snow. Most cloud detection algorithms operationally emplaeflectance.

a series of spectral threshold tests to determine if a p&el i We plan to extend our work on the problem of estimating
clear or cloudy. Having a channel centered around 1.6 mécroODIS channel 6 for AVHRR/2 images in several directions.
has significantly improved the ability to discriminate beem In order to determine if our methods have promise and can
clouds and snow using new sensors such as MODIS amquickly learn a good model, we trained on very little data. We
AVHRR/3. Unfortunately, a vast amount of data have begian to train on additional data over different times of year
collected before these sensors existed that did not haveoainderstand how much improvement is possible. We plan to
channel designed to detect clouds over snow and ice-covededelop more scalable algorithms that will allow us to train
surfaces. These data sets have large importance for climatelarge amounts of data in a practical amount of time. For
studies since they provide over 20 years worth of obsemstioexample, active learning algorithms only process exammtes
Thus, being able to improve the cloud masking abilities afhich the current model’s predictions are significantly iroe
these previous sensors will allow for improved monitorirfig cand do not waste effort on the remaining examples the way
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traditional machine learning algorithms do. Online leagi ACKNOWLEDGMENT
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times of year in order to better understand the situations in
which different data mining algorithms are most effective.

This may lead to the development of a hybrid scheme (e.
ensemble) that performs better than any one method. Alo
these lines, our MDMK kernel enables us to build an ensemble 9g9-1034, 2002.
of mixture models that use a variety of different kerndpl
functions. Our algorithms currently only train on and gexter
predictions for individual pixels in individual images. &jal

correlation and temporal correlation will be accountedifor [4]
our future work.
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APPENDIX |
INSTRUMENT SPECIFICATIONS

Tables Il and Il contain specifications of the AVHRR/2 and
MODIS instruments, respectively.

TABLE Il
AVHRR/2 INSTRUMENT SPECIFICATIONS

Ashok N. Srivastava Dr. Ashok N. Srivastava is

a Principal Scientist and Group Leader in the Data
Mining and Complex Adaptive Systems Group at
NASA Ames Research Center. He has fourteen years
of research, development, and consulting experience
in machine learning, data mining, and data analy-
sis in time series analysis, signal processing, and
applied physics. Dr. Srivastava has had significant
experience both in research (NASA, NIST, IBM) as
well as the business world at IBM (Senior Consul-
tant) and Blue Martini Software (Senior Director).

Dr. Srivastava’s machine learning research interestsidtectopics in kernel
methods, assessment of linear and nonlinear covariahilitgierstanding and
forecasting time-based data, and image processing. Hesdsiaerested in

distributed data mining and scalability issues in fedetadata systems. A
primary area of applied research is in the development obarb satellite
algorithms for automatic detecting and discovery of gesfal processes.

Channel Number| Wavelength (microns) Purpose
1 0.58 to 0.68 Cloud Cover
Snow Cover
Vegetation Index
2 0.725 to 1.00 Earth Radiation Budget
Surface Water Boundarie$
Vegetation Index
3 3.55 to 3.93 Water Vapor Correction
Thermal Mapping
4 10.3 to 11.3 Thermal Mapping
5 11.5t0 12.5 Water Vapor Correction
Thermal Mapping
TABLE Il

MODIS INSTRUMENT SPECIFICATIONS

Band | Bandwidth (microns) Primary Use
1 0.62 - 0.67 Land/Cloud/Aerosols
Boundaries
2 0.841 - 0.876 Land/Cloud/Aerosols
Boundaries
3 0.459 - 0.479 Land/Cloud/Aerosols
Properties
4 0.545 - 0.565 Land/Cloud/Aerosols
Properties
5 1.23-1.25 Land/Cloud/Aerosols
Properties
6 1.628 - 1.652 Land/Cloud/Aerosols
Properties
20 3.660 - 3.840 Surface/Cloud
Temperature
31 10.780 - 11.280 Surface/Cloud Temperaturg
32 11.770 - 12.270 Surface/Cloud Temperaturg
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